
International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014
ISSN 2091-2730

875 www.ijergs.org

Analysis of Scheduling Nested Transactions in Distributed Real-Time

Environment

Anup A. Dange, Prof. Neha Khatri-Valmik

Department of Computer Science and Engineering

Everest Education Society‟s Group of Institutions

College of Engineering & Technology

Ohar, Aurangabad, Maharashtra, INDIA

dange.anup88@gmail.com

nehavalmik@gmail.com

Abstract— A lot of research work has been done in the field of real-time database system to seek optimizing transaction scheduling

to ensure global serializability. Nested transaction offers more decomposable execution units and finer-grained control over

concurrency and recovery than “flat” transactions. For most applications we believe that it is desirable to maintain database constancy.

It is possible to maintain consistency without serializable schedules but this requires more specific information about the kinds of

transactions being executed. Since we have assumed very little knowledge about transactions, serializability is the best way to achieve

consistency.

Keywords— Serializability, Concurrency Control, Lock Mechanism, hierarchical and flat protocol commit protocol, Two Phase

Locking, Transaction Optimization, priority assignment

1. Introduction

 Today‟s Database Management Systems (DBMSs) work in multiuse environment where users access the database

concurrently. Therefore the DBMSs control concurrent execution of user transactions, so its overall correction of the

database is maintained. Transaction is a user program which accesses the database. Database concurrency control permits

users to access a database in a multiprogrammed fashion while preserving the illusion that each user is executing alone on

a dedicated system. A distributed database system allows applications to access data from local and remote databases.

Distributed applications spread data over multiple databases on n number of machines. Several smaller sized servers can

be less expensive and more flexible than one large size, centrally located server. Distributed configurations take advantage

of small sized, powerful server machines and less expensive connectivity as an option. Distributed system allows you to

store data at several sites and each site can transparently access all the data. The key goals of distributed database system

are to maintain availability, accuracy, concurrency and recoverability.

 multiple users are accessing the same database simultaneously, their data operations must have to be coordinated

so that inconvenient result gets avoided and concurrency of the shared data is reserved. This is called concurrency control

and should provide each concurrent user with the illusion that he is referencing independent, dedicated database. For

concurrent transactions execution serializability is the major correctness criteria. It is considered the highest level of

isolation between transactions and plays an essential role in concurrency control. Two-phase locking is the most common

method for concurrency control among transactions. Also this has been accepted as standard solution.

1.1 Commit Protocols

 Enough research has been done on commit processing of flat transactions. The protocols are one phase commit,

two phase commit and three phase commit protocols, PROPT real-time commit protocol and many others according to

their optimizations. These protocols involve in transferring many messages in any of phase between participants where

distributed transactions are executed. During this process many log records are generated and some are forced to dumped

or flushed into the disk immediately in a synchronous manner. Due to this logging and messaging, commit protocols

significantly increase the execution time for transaction execution. This creates problem to meet need of real-time context,

this ultimately results in violation of timing constraints imposed on transactions. Therefore, selection of commit protocol

is an important design decision for DRTDBS. There are lots of papers those already discussed about this issue given

solution as relaxation in traditional ways or notations of atomicity or strict resource allocations and performance

guarantees from the system. These all according to Harista who proposed PROPT real-time commit protocol.

mailto:dange.anup88@gmail.com
mailto:nehavalmik@gmail.com

International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014
ISSN 2091-2730

876 www.ijergs.org

 Nested transactions means hierarchy of transactions and sub transactions and other sub transaction within

previous sub transaction or contain any of database operations (read and write). In whole nested transaction is a collection

of sub transactions and atomic database operations that comprise whole atomic execution unit.

 In this paper we focus on How to achieve global serializability through concurrency control and transaction commit

protocols. The concurrency control mechanism can be thought of as a policy for resolving conflicts between two or more transactions

that want to lock the same data object. For concurrency control we used lock mechanism, called 2PL-NT-HP to solve conflict

problems between nested transactions. For nested real-time transactions we used hierarchical and flat protocols, called 2PC-RT-NT.

1.2 Organization

 The remainder of this paper consists of: Next section describes existing nested transaction system model along with its

characteristics. Section 3 contains a real-time scheduler with priority assignment and concurrency control for nested transactions

named as Two Phase Commit Nested Transaction Hierarchical Protocol. 4
th

 section contains study of traditional hierarchical and flat

two phase commit protocol along with detailed information. Last Section consists of conclusion and future research direction.

2. Real Time Nested Transaction Model

 Two main types of nested transaction models are (1) closed nested transaction and (2) open nested transaction. In

the closed nested transaction, a sub transaction‟s effect not appears outside of its parents view. Here commitment of sub

transaction is depends upon the commitment of parent, while in open nested transaction model, sub transaction execute

and commit itself independently. Due to some semantics of transactions we just include closed nested transactions.

 In nested transaction model sub transactions are appearing atomic to the surrounded transactions and may commit

independently. Until and unless all child transactions are committed a transaction is not allowed to commit. If child aborts

its parent transaction need not to abort instead it just performs its own task or recovery. This is important to achieve its

goal transaction need to perform any of following task: (1) to ignore condition (2) to restart the sub transaction (3) to

initiate new sub transactions.

Some of the characteristics of nested transactions are listed in following table.

Parameter Meanings

Ti A transaction/ sub

transaction

D(Ti) Deadline of Ti

P(Ti) Priority of Ti

ArrTime(Ti) Arrival time of Ti

SlackTime(Ti) SlackTime of Ti

Starttime(Ti) StartTime of Ti

ResTime(Ti) Resource time that the

transaction requires for its

execution

RemExTime(Ti) Remaining execution time

of Ti

ElaExTime(Ti) Elapsed execution time of

Ti

Table1. Characteristics of Nested Transaction

3. Scheduling Real-Time Nested Transactions

3.1 Priority Assignment Policy

International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014
ISSN 2091-2730

877 www.ijergs.org

 Different types of priority assignment policies are there for flat transactions in Real time database management

system. Without priority both transactions Ti and Tj shares CPU and disk units. Due to this any of transaction misses its

deadline before completion of others work. Due to this best policy that is EearliestDeadLineFirst (EDF) priority

assignment is the best in terms of success ratio. EDF assigns priority on the base of deadline. It assigns highest priority to

earliest deadlined transaction. The formula for priority is given by:

P(Ti) = 1/D(Ti)

3.2 Sub transaction Priority Assignment

 Along with main transaction priority there is need to prioritize subtransactions also. This help to ensure that

transaction is not get delayed due to data conflict. There is need to assign deadline to subtransactions also. This deadline is

according to transaction deadline and individual workload of subtransaction. But this does not improve success ratio as

proven in [4]. There is another way to assign priority to transaction as describe in [5]. According to [5] addition of small

p-value to the overall priority of transaction, this might help to prioritize subtransactions within a transaction such that this

does not effect on priority assignment policy based on EDF. As child subtransaction must get complete before its parent

subtransaction or transaction this is been done by assigning higher priority to a child subtransaction than parent

transaction. This help to avoid intra-deadlock. Formula to calculate subtransaction priority is given by:

Subtransaction_priority = transaction_priority + subtransaction_level

Where, subtransaction_level is 0 for top level transaction. Nest to top level transaction has level value as 1, and so on,

level value increases by 1 in each next level down in transaction tree.

4. Real-Time Concurrency Control

 The most important characteristic of the cconcurrency control protocol is performance. In conventional database systems

performance is usually measeured as the number of trasactions per second. In real-time databases performane is depends upon many

other criteria, which are related to real-time. Some of these are the number of transactions that missed their deadlines, average tardy

time etc. Due to new goals of optimization the algorithm that are used in the conventional daatabase systems do not show best result.

4.1 Data Conflict

 Data Conflicts between committing and executing transactions are not uncommon compared with data conflicts between

executing transactions. For example, in two phase locking protocol if an executing transaction request a data item which being locked

by another transaction in a conflicting mode, the lock request will be denied and the executing transaction will be blocked until the

lock is released.

4.2 Classical 2PL for Nested Transactions

 Locking protocol provides two modes of synchronization [16]: Read: permits number of transactions‟ to

access database at a time. Write: permits a single transaction for accessing a data item[12,9]. Transaction can acquire a

lock on data items in any of the mode as M(Read,Write) and it holds until its termination. Other than holding a lock on

data item a transaction can retain a lock when one of its subtransaction already committed. Its parent transaction inherits

lock and then can retain them. There is a difference between holding and retaining lock; if a transaction holds a lock then

it can access locked data items in given mode but this is not true for retaining a lock. Suppose write lock is retained by

transaction Ti then subtransaction outside the hierarchy of retained lock is not able to acquire the lock. Whereas its

descendent can acquire lock in read as well as write mode. This is not true in case of read lock. If a subtransaction Ti

retains lock in write mode then any non descendent can holds the lock but only in read mode not in write mode and it

remains lock retainer until its termination (i.e. commit or abort).

International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014
ISSN 2091-2730

878 www.ijergs.org

4.3 Real-Time 2PL for Nested Transactions

 During concurrent execution of transactions it is important to maintain concurrency to order the updates

in databases to maintain serializability. To do so in most of flat and nested transaction models locking data item is

standard method. In real-time environment to maintain serializability a real-time concurrency control model was put

forward by M. Abdouli, B. Sadeg and L.Amanton in their paper termed as 2PL-NT-HP
[]
. It used to solve data conflict

problem occur between subtransactions by allowing transactions/subtransactions with higher priority to access data item

and blocks or abort lower priority transaction. This 2PL-NT-HP is extended model of classical 2PL-NT, where some extra

characteristics are added to it. These characteristics are combination of priority inheritance, priority abort, conditional

restart and controller of wasted resources. Other than these there are some more characteristics of 2PL-NT-HP.

4.3.1 Priority Inversion

 When the priority driven preemptive scheduling approach and two-phase locking protocol are simply

inherited together, a problem occurs called as priority inversion. This occurs when higher priority transaction has to wait

for execution of lower priority (sub) transaction.

For example, suppose transaction TH has highest priority and TL has lower priority than TH and TH is blocked by TL due to

access conflict. In this case TH waiting for lock and TL is executing, some transaction TM may arrive, whose priority lies in

between priorities of TH and TL then it just preempt TL and take over the CPU even though TM has no data conflict with TL

or TH. This eventually delays the execution of TH.

4.3.2 Priority Inheritance

 Under this, when priority inversion occurs low priority transaction holding lock will execute at the

priority of highest priority transaction waiting for the lock, until it terminates (abort or commit). In this way the lock

acquiring transaction executes faster and releases lock quickly. This results in reduction of blocking time of higher

priority transaction.

For example, suppose TH is blocked by TL due to data access conflict. Then, by using priority inheritance, TL will execute

at the priority of TH. Now if TM, an inheritance priority transaction, arrives, it cannot preempt TL since its priority is less

than the inherited priority of TL. Thus TH will not be delayed by TM.

4.3.3 Priority Abort

 Priority inversion problem is overcome by using priority abort scheme. In this lower priority transaction

is aborted when higher priority transaction requires lock which is hold by lower priority transaction.

For example, when transaction TH conflicts with a lock holding transaction TL, TL is aborted if TH‟s priority is higher than

that of TL. Otherwise, TH will wait for TL. In this way, a high priority transaction will never be blocked by any lower

priority transactions. Therefore priority inversion is completely eliminated.

4.3.4 Conditional Restart and Controller of Waste Resources

 Conditional restart is employed to avoid the starvation problem come across during scheduling by using

EDF, the mechanism is as follow: If slack time of (sub) transaction with higher priority is enough to execute after all

lower priority (sub) transactions and then allowing these lower priority (sub) transactions to access data items firsts

instead of aborting lower priority (sub) transactions. In other case these lower priority (sub) transactions must be aborted

and restarted if controller of water resources allows it.

 The controller of waste resources is a mechanism that checks if the restarted (sub) transaction can achieve

its work before its deadline, using this mechanism, we reduce the wasting of resources as well as time.

International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014
ISSN 2091-2730

879 www.ijergs.org

5. Distributed Real-Time Nested Transaction Commit Protocol

 For the nested transaction model a variety of protocols are already developed most are based on classical

2PC protocol. In our paper we focus on distributed real-time 2PC for nested transactions. But before directly working with

2PC we first study classical 2PC protocol.

5.1 The Classical 2PC protocol

 In the classical 2PC protocol, there are coordinator and participants. There is no direct communication between coordinator

and participants apart from participants inform the coordinator while they join the transaction. Coordinator and participants

communicate using message passing technique. Client can directly request to coordinator to commit (or abort) transaction. If client

request aborttransaction the transaction then coordinator informs this to every participant immediately. If client request for commit

transaction then 2PL comes to existence. In the first phase of the two-phase commit protocol the coordinator asks all the participants if

they are prepared to commit this is called „voting phase‟; in the second, it tells them to commit (or abort) the transaction; this is called

„decision phase‟. This is illustrated in fig.

Fig. 1 Two Phase Commit Protocol

 This above protocol invokes only after receiving the WORKDONE message from the participant to the

coordinator. This indicates transaction is ready to commit that is the work assigned to it is been completed. After receiving

WORKDONE message coordinator broadcast PREPARE message to the participants. Those participants are ready to

commit are replied as YES vote and acquires a prepared state. This prepared state means not unilaterally abort or commit

the transaction alone. It has to wait for the final decision from the coordinator. On the other hand those participants wants

to abort sends NO vote; it acts as veto to participants. This result in unilateral abort of transaction without waiting for the

final outcomes from the coordinator. After receiving vote from each participant coordinator starts second phase. If all

votes are YES then coordinator commits transactions by sending message as COMMIT to each participant; but any of

participant votes NO then transaction is aborted by sending ABORT message to all participants. In both cased ACK

message receives to the coordinator and all the resources get released.

Phase 1 (voting phase):

1. The coordinator sends a canCommit? request to

each of the participants in the transaction.

2. When a participant receives a canCommit? request

it replies with its vote (Yes or No) to the coordinator.

Before voting Yes, it prepares to commit by saving

objects in permanent storage. If the vote is No, the

participant aborts immediately.

Phase 2 (completion according to outcome of vote):

3. The coordinator collects the votes (including its

own).

(a) If there are no failures and all the votes are Yes,

the coordinator decides to commit the transaction and

sends a doCommit request to each of the participants.

(b)Otherwise, the coordinator decides to abort the

transaction and sends doAbort requests to all

participants that voted Yes.

4. Participants that voted Yes are waiting for a

doCommit or doAbort request from the coordinator.

When a participant receives one of these messages it

acts accordingly and, in the case of commit, makes a

haveCommitted call as confirmation to the

coordinator.

International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014
ISSN 2091-2730

880 www.ijergs.org

5.2 Real-Time 2PC for nested transactions

 The nested 2PC protocol (also called Tree 2PC or Recursive 2PC) is a common variant of 2PC in a computer network,

which better utilizes the underlying communication infrastructure. The participants in a distributed transaction are typically invoked in

an order which defines a tree structure, the invocation tree, where the participants are the nodes and the edges are the invocations

(communication links). The same tree is commonly utilized to complete the transaction by a 2PC protocol, but also another

communication tree can be utilized for this, in principle. In a tree 2PC the coordinator is considered the root ("top") of a

communication tree (inverted tree), while the cohorts (participants) are the other nodes. The coordinator can be the node that

originated the transaction (invoked recursively (transitively) the other participants), but also another node in the same tree can take the

coordinator role instead. 2PC messages from the coordinator are propagated "down" the tree, while messages to the coordinator are

"collected" by a cohort from all the cohorts below it, before it sends the appropriate message "up" the tree (except an abort message,

which is propagated "up" immediately upon receiving it or if the current cohort initiates the abort).

ACKNOWLEDGMENT

 There is always a sense of gratitude, which everyone expresses for others for the help that has been rendered a crucial point in

life and which facilitated the achievements of goals. I want to express a deepest gratitude to everyone who has helped me in

completing this Seminar report successfully.

 I feel extremely honored for the opportunity to work under the guidance of Prof. Neha Khatri-Valmik. Her eagerness to

discuss on the topic and offer suggestion has been constant of encouragement of this work. I express my indebtedness to her support.

 I am also thankful to Prof. R.A. Auti, Head, Computer Science & Engineering Department, Everest Education Society‟s

College Of Engineering and Technology, Aurangabad.

 I am also thankful to Prof. Vankatesh Gaddime, Principal, Everest Education Society‟s College Of Engineering and

Technology, Aurangabad; for providing all necessary facilities at the college level and many helpful suggestions.

CONCLUSION AND FUTURE WORK

 In this paper we studied the performance of distributed real-time nested transactions. We have used

comprehensive approach to ensure global serializability such as real-time concurrency control approach and to maintain

atomicity we used real-time two phase commit protocol. 2PL-NT-HP is a combination of properties like priority

inheritance, priority abort, a conditional restart and controller of waste resources. Hierarchical 2PC is better than flat 2PC.

The level size affects performance of real-time nested transactions. As we increase level size its performance gets

decrease this is because of communication and number of messages exchanged on each level.

For the future work we use other protocols such as 3PC and PROPT protocols to enhance the performance of real-time

nested transactions.

REFERENCES:

M. Abdouli, B. Sadeg and L. Amanton, “Scheduling Distributed Real-Time Nested Transactions,” Eight IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC‟05).

 Hong-Ren Chen, and Y.H.Chin, "An Efficient Real-Time Scheduler for Nested Transaction Models", In Proceedings of the Ninth
International Conference on Parallel and Distributed Systems (ICPADS'02),2002, pp.335-340.

 K.Y. Lam, T.W. Kuo, and W.H. Tsang, "Concurrency Control in Mobile Distributed Real-Time Database Systems", Information
Systems, 2000, vol.25, no.4, pp.261-286.

S.K. Lee, M. Kitsuregawa, and C.S. Hwang, "Efficient Processing of Wireless Read-Only Transactions in Data Broadcast", In
Proceedings of 12th International Workshop on Research Issues in Data Engineering: Engineering E-Commerce/E-Business
Systems RIDE-2EC, 2002,pp.101-111.

 V.C.S. Lee, K.W. Lam, and S.H. Son, "On transaction Processing with Partial Validation and Timestamp Ordering in Mobile
Broadcast Environments", IEEE Transactions on Computers, 2002, vol.51, no. 10, pp.1196-1211.

 Lei Xiangdong, Zhao Yuelon, and Yuan Xiaol, "Transaction Processing in Mobile Database Systems", Chinese Journal of
Electronics, 2005, vol.14, no.3, pp.491-494.

 V.C.S. Lee, K.W. Lam, and T.W. Kuo, "Efficient Validation of Mobile Transactions in Wireless Environments", The journal of
Systems and Software, 2004, vol.69, no.1, pp.l83-193.

http://en.wikipedia.org/wiki/Computer_network

International Journal of Engineering Research and General Science Volume 2, Issue 6, October-November, 2014
ISSN 2091-2730

881 www.ijergs.org

Hong-Ren Chen, and Y.H. Chin, "Scheduling Value-Based Nested Transactions in Distributed Real-Time Database Systems", Real-
Time Systems, 2004, vol.27, pp.237-269.

M. Abdouli, B. Sadeg, and L. Amanto, "Scheduling Distributed Real-Time Nested Transactions", In Proceedings of the Eighth IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC'05), 2005, pp.208-215.

Liao Guoqiong, Liu Yungsheng, and Wang Lina, "Concurrency Control of Real-Time Transactions with Disconnections in Mobile
Computing Environment", In Proceedings of the 2003 International Conference on Computer Networks and Mobile Computing
(ICCNMC'03), 2003, pp.205-212.

G. Weikum, and G. Vossen. Transactional information system: theory, algorithms, and the practice of concurrency control and
recovery, USA:Elsevier Science, 2003.

A. Data, and S.H. Son, "Limitations of Priority Cognizance in Conflict Resolution for Firm Real-time Database Systems", IEEE
Transactions on Computers, 2000,vol.49, no.5, pp.483-501.

E. Pitoura, and P.K. Chrysanthis, "Multiversion Data Broadcast", IEEE Transactions on Computers, 2002, vol. 5, no. 10, pp.1224 -
1230.

J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.

I.S. Jacobs and C.P. Bean, “Fine particles, thin films and exchange anisotropy,” in Magnetism, vol. III, G.T. Rado and H. Suhl, Eds.
New York: Academic, 1963, pp. 271-350.

Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy studies on magneto-optical media and plastic substrate
interface,” IEEE Transl. J. Magn. Japan, vol. 2, pp. 740-741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301,
1982].

M. Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science, 1989

