
International Journal of Engineering Research and General Science Volume 2, Issue 3, April-May 2014
ISSN 2091-2730

170 www.ijergs.org

Socio-technical Interactions in OSS Development

Jasveen Kaur1, Amandeep Kaur1, Prabhjot Kaur1

1Scholar, Guru Nanak Dev University, Amritsar

E-mail-jasveenkaur.1990@gmail.com

ABSTRACT -This study is going to provide directions to open source practitioners to better organize their projects to achieve

greater performance. In this research, we try to understand socio-technical interactions in a system development context by examining
the joint effect of developer team structure and open source software architecture on OSS development performance. We hypothesize

that developer team structure and software architecture significantly moderate each other‘s effect on OSS development performance.

Empirical evidence supports our hypotheses and suggests that Larger teams tend to produce more favorable project performance when

the project being developed has a high level of structural interdependency while projects with a low level of structural

interdependency require smaller teams in order to achieve better project performance. Moreover, centralized teams tend to have a

positive impact on project performance when the OSS project has a high level of structural interdependency. However, when a project

has a low level of structural interdependency, centralized teams can impair project performance.

Keywords—Open source software, collaboration network, social network analysis, software architecture, software project

performance, network centralization, software structural interdependency

I) INTRODUCTION

In recent years, Open Source Software(OSS) development has caused great changes in software world. The software developers

collaborate voluntarily to develop software that they or their organizations need [1]. Compared with traditional software development,

OSS development is unique in that it is self-organized by voluntary developers. Moreover, OSS projects automatically generate

detailed and public logs of developer activities and project outputs in the form of repositories, allowing a clear view of their inner

working details [1]. These unique aspects of OSS have inspired studies regarding motivations of individual participants, governance of

OSS projects [3],organizational learning in OSS projects[2], architecture of OSS code [4], in OSS projects. These OSS studies have

increasingly pointed toward the inseparable role of the social and the technical aspects in shaping OSS development processes and

outcomes. Previous OSS studies suggest that OSS development is particularly suited for an examination of combined effects of the

social and the technical in a system development context since it promotes interactions between software developers and software

artifacts. This study focuses on OSS developer team structure as the social aspect and software architecture as the technical aspect of

OSS projects. Our general research question is: what is the joint effect of developer team structure and OSS project architecture on

OSS development performance? The answer to our research question can serve as a step towards integrating the separate lines of

work on OSS development‘s social and technical dimensions into a coherent research literature and also helping OSS practitioners to

understand the strengths and weaknesses of the OSS development process

II) INSEPARABLE ROLE OF THE SOCIAL AND THE TECHNICAL ASPECTS

Researchers have long recognized the relationship between social processes and technical properties in an organizational work

context. The organizational information processing theory (OIPT) provides a widely cited perspective of this composite relationship:

to achieve optimal performance, there should be a match between information processing capabilities of organizational structure

(social processes) and information processing needs of a given task (technical properties)[6]. In the organizational literature,

information processing capabilities are typically assessed by looking at the collaboration structure of the workforce while information

processing needs are evaluated by examining the level of interdependency among task units. Cataldo et al developed a social–

technical congruence measure that captures the proportion of collaboration activities actually occurred in development teams relative

to the total number of collaboration activities required by interdependency among software development task assignments. A

significant impact of this social–technical congruence on project productivity manifests the equally important roles of organizational

http://www.ijergs.org/
mailto:jasveenkaur.1990@gmail.com

International Journal of Engineering Research and General Science Volume 2, Issue 3, April-May 2014
ISSN 2091-2730

171 www.ijergs.org

structure and task characteristics in determining software project performance [9]. In addition, Kim and Umanath [7] employed a

multiplicative interaction model in examining the relationship between development team structure, software task characteristics, and

project performance. This modeling approach revealed that team structure and task characteristics served mutually moderating roles in

affecting project performance outcomes.

In summary, both the organizational and software engineering literatures emphasize the inseparable role of organizational structure

and task characteristics in organizational work performance. Taken together, prior organizational and software engineering research

suggests that social processes and technical properties can play equally important and mutually moderating roles in software

development performance. An understanding of the mutually moderating roles of team structures and project architecture can help

OSS practitioners to realize the social and the technical aspects of OSS development altogether and harvest project performance gains

from their joint effect.

III) SOCIO-TECHNICAL INTERACTIONS IN OSS

1)Social—Development Team Structure:

Open source software development is a kind of distributed software development that has a large amount of contributors and because

of using Internet and make sharing freely it is so successful and useful that developers can communicate over the distance. Due to

having variety of contributors in OSS projects and the story of knowledge sharing among the project can be more powerful and this

might lead to improve even the position of contributors. For example they can move to the developers group from users or even in

developers group move to the core developers. Core developers are a small amount of expert developers, integerated to control and

manage the system. Codevelopers are the people who have directly impact on software development in the project, also they effect on

the code base and they can find issues on licensing.

Following prior research, we view OSS development team structure as an important social aspect of OSS development since it

manifests information processing capabilities of OSS workforce[5]. We conceptualize the development team structure according to

social network theory[11]. Social network theory models individual actors as nodes of a graph joined by their relationships depicted as

links between the nodes [8].When relationships are defined as collaborations on a task, the social network is specified as a

collaboration network.We choose to generate collaboration networks on an intraproject level; that is, each collaboration network

include developers of a single OSS project as nodes and collaboration incidences on tasks (i.e. source code files) of the same project as

links.An intraproject collaboration network is a close-up view of relationship structures within a particular project. Compared with an

interproject (i.e., community-level) network, an intraproject (i.e., project-level) network is more relevant to our research question since

it allows us to evaluate how organizational structure of a particular OSS project team affects performance of the corresponding

project.

In OSS projects, the basic unit of work is a file in the OSS distributed version control system (DVCS) like git. Hence, we view

collaboration tasks as the files in the DVCS system. A collaboration incidence occurs when two developers make code commits to the

same sourcecode file. A collaboration network refers to the graph made of open source developers as nodes and the collaboration

incidences on the same file as links.

We characterize OSS collaboration network structure by two commonly used measures: network size and network centralization.

Network size is the number of nodes in a graph. It indicates the overall scope of the collaboration network.

Network size captures the open nature of OSS development where a large number of developers collaborate to develop software in

contrast to traditional software development where the number of developers is comparatively lower. Network centralization indicates

the extent to which a network is centralized around one or a few nodes. Centralization of a network is measured in comparison to the

most central network—the star network. In the star network, one central node connects to all of the other nodes while all other nodes

are only connected to the central node. Any deviation from this structure indicates a reduction in network centralization. Although

there are other metrics of collaboration network structure, we chose to focus on the two measures because network size and

centralization reflect the major difference between the two alternative philosophies for organizing programming teams: the chief

programmer team and the egoless team. Such teams are intentionally small and centralized around a few programming experts. In

contrast, the egoless team reflects decentralized communication and collaboration among programmers and is less concerned about

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 2, Issue 3, April-May 2014
ISSN 2091-2730

172 www.ijergs.org

team size. An examination of network size and centralization of OSS teams helps us to understand the link between the unique

characteristics of OSS collaboration network structure and OSS development performance.

2)Technical—Software Architecture:

In recent years, the study of software architecture (SA) has emerged as an autonomous discipline requiring its own concepts,

formalisms, methods, and tools. SA represents a very promising approach since it handles the design and analysis of complex

distributed systems and tackles the problem of scaling up in software engineering. Through suitable abstractions, it provides the means

to make large applications manageable.

An important technical aspect of software development projects is the structural interdependency among processing elements of the

software being developed. Software structural interdependency is ―the strength of association established by a connection from one

module to another.‖ [4]. In other words, software architecture is a formal way to describe the structural interdependency of a software

system in terms of components and their interconnections. By decomposing the overall task into parts and then designing,

implementing, or maintaining each individual part, software architecture or software structural interdependency provides a feasible

way to develop and manage large systems. It reduces the complexity of software development projects to associations.

Prior research shows that software architecture is an important indicator of the information processing need of a software project. In

general, the load and diversity of information needed to be processed by a software project increases with the level of structural

interdependency among its processing elements.

3)Interaction Between Team Structure and Software Architecture:

In this study, interaction between the social and the technical aspects in an organizational work context refers to the mutually

moderating or mutually contingent relationship between team structure (network size and centralization) and software architecture

(structural interdependency) in OSS development. In other words, we conceptualize socio-technical interactions in OSS projects as

multiplicative interaction of team structure and software architecture.

IV) HYPOTHESES

We develop our hypotheses following the central argument of OIPT that organizational work performance is jointly determined by

information processing capabilities of the workforce and information processing needs of the task. As discussed before, structure of

the team collaboration network reflects the information processing capabilities of a development team. Information processing need of

the software development process is represented by the structural interdependency of the software being developed. The mutually

dependent effects of development team structure and software structural interdependency on project performance are specified below :

A. Network Size and Structural Interdependency

Network size has mixed implications to information processing capabilities of a team. On one hand, larger networks incur higher

coordination and communication cost.On the other hand, larger networks carry more diverse expertise and are better at specialization

and division of labour among team members.The overall effect of network size on task performance depends on the structural

interdependency of OSS projects. Projects with a lower level of structural interdependency do not take full advantage of the diverse

expertise and perspectives in a large team while these projects have to bear the increased communication cost in such a team. Network

size can therefore have a negative impact on the project performance of these projects. In a project with a high level of structural

interdependency, capabilities of a large team in processing a heavy load of diverse information can produce salient project

performance gains, compensating for the communication cost associated with a large team. The negative impact of network size on

project performance can therefore be reduced in this scenario.

Reciprocating effects of network size on project performance, impact of software structural interdependency on project performance

can vary across development teams with different network size. In traditional software development, where team size tends to be

small, software structural interdependency is often found to increase software development effort which in turn can impair project

performance. However, recent OSS research suggests that OSS development may resist the negative effect of software structural

interdependency on development effort due to its self-organized nature. With the motive to adjust development team structure

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 2, Issue 3, April-May 2014
ISSN 2091-2730

173 www.ijergs.org

according to project characteristics, an OSS team can recruit new members when a high level of structural interdependency is

perceived. This will allow the project to take advantage of information processing capabilities afforded by a large collaboration

network. On the other hand, when a team is unwilling or unable to recruit additional members for a project with a high level of

structural interdependency, project performance may be impaired as a result of insufficient information processing capabilities in this

team. Therefore,

Hypothesis1: Collaboration network size and software structural interdependency mutually and positively moderate each other‘s

impact on OSS project performance; that is, impact of network size on project performance is more likely to be positive when

software structural interdependency is higher, and impact of software structural interdependency on project performance is more likely

to be favorable when network size increases.

B. Network Centralization and Structural Interdependency

Similar to network size, network centralization has mixed effects on information processing capabilities of a team. A centralized team

is better at identifying and consolidating expertise in a team. It incurs lower coordination cost than a chain-like network (low network

centralization). However, a centralized team structure imposes significant information processing load on the central nodes. This can

hamper the effectiveness of the whole team. Projects with a low level of structural interdependency do not require much consolidation

among knowledge domains. Thus centralization of project team with low structural interdependency has no much importance, leading

to suboptimal project performance. However, as the structural interdependency of a project increases, the advantage of a centralized

team structure in identifying and consolidating expertise from a wider range of knowledge domains becomes important. This

advantage enables a more centralized team to achieve better performance.

On the other hand, the tendency for software structural interdependency to negatively affect project performance can be particularly

strong in a team with chain-like structure (low centralization) since such a team is relatively ineffective for knowledge

consolidation.This tendency can be reduced by a centralized team since such a team can identify diverse information and coordinate

information processing activities. Therefore,

Hypothesis 2: Collaboration network centralization and software structural interdependency mutually and positively moderate each

other‘s impact on OSS project performance; that is, impact of network centralization on project performance is more likely to be

positive in projects with a higher level of structural interdependency, and impact of software structural interdependency on project

performance is more likely to be favorable when network centralization increases.

V) IMPLEMENTATION

The data for the study were collected from Github.com. Git is a distributed version control and source code management (SCM)

system with an emphasis on speed. Every Git working directory is a full-fledged repository with complete history and full version

tracking capabilities, not dependent on network access or a central server. When you get a copy of the repository, you do not just get

the snapshot, but the whole repository itself.

A. Data Collection

From hundreds of OSS projects hosted at Github, we selected a sample of 15 projects for analysis. We selected the sample projects

that were registered between Jan 2005 and Nov 2005 and that have atleast ten developers in the collaboration network. This ensures

that the sampled projects have sufficient elapsed time since starting so that significant amount of development activity has already

taken place. Collaboration network measures are sensitive to the size of the network. Particularly, when the network size is small,

some network measures, such as centralization, become meaningless. Therefore, we have restricted our sample to projects with at least

ten developers in the collaboration network.

1) Collaboration Network Structure: As discussed earlier, we use network size and network centralization to measure collaboration

network structure. Network Size is measured by the total count of nodes in the network. The network centralization measure follows

the approach proposed by Freeman [8]. It expresses the degree of inequality in a network as a percentage of that of a perfect star

network of the same size. The higher the value, the more centralized the network is. We employed the widely used social network

analysis software UCINET6[12] to compute the structure metrics for the collaboration networks in our sample.

http://www.ijergs.org/
http://en.wikipedia.org/wiki/Distributed_revision_control
http://en.wikipedia.org/wiki/Source_code_management
http://en.wikipedia.org/wiki/Working_directory
http://en.wikipedia.org/wiki/Repository_%28version_control%29

International Journal of Engineering Research and General Science Volume 2, Issue 3, April-May 2014
ISSN 2091-2730

174 www.ijergs.org

2) Software Structural Interdependency: Although automatic tools(e.g., Lattix) are available for evaluating software architecture,

these tools are usually limited to a few programming languages such as C/C++ and Java. The overwhelming amount of source code

and the wide range of programming languages in our sample prevent us from measuring software structural interdependency either

manually or using the automatic tool. In a study about OSS code MacCormack et al. pointed out that, ―in software designs,

programmers tend to group source files of a related nature into ‗directories‘ that are organized in a nested fashion.‖ This suggests that

the Git file tree structure should be considered in gauging the level of software structural interdependency. So we measure software

structural interdependency by taking the average number of source code files per folder in the Git tree. A large number of task files per

folder indicates a high level of structural interdependency since files grouped into the same folder are typically related.

3) OSS Development Performance: In OSS projects, performance cannot be measured by parameters such as cost of development and

development within schedule because OSS projects generally do not involve a budget or a deadline. Prior research on OSS

development has employed various OSS project performance measures such as OSS developers‘ perceived project success, the

percentage of resolved bugs, increase in lines of code (LoC), promotion to higher ranks in an OSS project, the number of subscribers

associated with a project, and number of code commits. Among these measures, we choose the number of code commits per developer

per day as our measure of OSS development performance. A code commit refers to a change in the working directory through adding,

deleting, or changing software code. The number of code commits is an objective measure of project performance that has been

repeatedly used by prior studies regarding effects of social processes on technical success of OSS projects. These studies indicate that

the number of code commits is particularly suited for an examination of both social and technical factors in OSS development. Our

measure, the number of code commits per developer per day, allows us to compare performance across projects with different team

size and duration.

4) Control Variables: We controlled for the following variables based on the previous literature: Product Size: In the software

engineering literature, product size has been identified as an important factor in manpower, time, and productivity of a project.

Therefore, product size is used as a control variable. According to the literature, we measure product size as the total LoC of an OSS

project.

Programming Language: Software programming language is another well-recognized factor that may affect software performance.

Many projects employ more than one language. Java,C++, and C are the most frequently used. Due to the limited sample size, we

created four dummy (binary) variables: ―Java,‖ ―C++,‖ and ―C‖ to account for the top three most frequently used languages, and

―other‖ to represent all the other languages.A project receives a value of 1 for a language dummy variable if it uses the language in

consideration, a value of 0 otherwise. In other words, a project has four language values, one for each of the four dummy variables.

The ―other‖ language variable was left out of the regression model in order to prevent dummy variable trap.

License Type: OSS projects use different licensing schemes and the specific license type used may affect developer motivation and

project success due to commercial or noncommercial nature of a license. License type is measured as a binary variable. All projects

with the most popular OSS license, the GPL (general public license, usually indicating a noncommercial OSS product) license, are

given a value of 1. All other projects have a value of 0.

B. Data analysis

We apply linear regression model to verify our hypotheses. Linear regression is a statistical technique for relating a dependent variable

to one or more independent variables(predictors). This model employs the ordinary least squares (OLS) technique in hypothesis

testing. It captures a linear relationship between the expected value of dependent variable and each independent variable (when the

other independent variables are held fixed). If linearity fails to hold, even approximately, it is sometimes possible to transform either

the independent or dependent variables in the regression model to improve the linearity. Here, the number of code commits per

developer per day, network size and product size are log transformed to account for the nonlinear relationship between project

performance and network size and product size.Other variables remain in their original form, because it is possible for them to take

―0‖ as a value. A log transformation of these variables would arbitrarily truncate out meaningiful data points. We have used IBM

SPSS statistical tool for analysis and results.

C. Results

http://www.ijergs.org/
http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/Dependent_and_independent_variables
http://en.wikipedia.org/wiki/Linear
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Dependent_and_independent_variables

International Journal of Engineering Research and General Science Volume 2, Issue 3, April-May 2014
ISSN 2091-2730

175 www.ijergs.org

The model incorporates several interaction effects. Interaction effects represent the combined effects of variables on the dependent

measure. When an interaction effect is present, the impact of one variable depends on the level of the other variable. We have taken

code commits per developer per day as the dependent variable and product of software structural interdependency and network size as

a first interaction variable and product of software structural interdependency and network centralization as the second interaction

variable. In such models, multicollinearity is a common problem.We attempted to correct for multicollinearity by centering the

interacting variables on their mean. Centering just means subtracting a single value (here mean) from all of your data points. The

descriptive statistics for the resulting dataset are shown in Table I. The results of the regression analysis are reported in Table II and

Table III. Note that the mean values in Table I are uncentered values.

TABLE I

Descriptive Statistics

N

Mean Std. Deviation Minimum Maximum Valid Missing

codecommits 15 0 .2989 .4789 .0098 1.9000

Network size 15 0 2.6557 .8992 -1.7807 1.8893

N/w centralization 15 0 .1694 .1441 -.1495 .4305

SSI 15 0 3.9189 3.9189 -6.3811 6.0189

Product size 15 0 10.4221 1.8959 8.0380 13.2020

Licence 15 0 .4667 .5164 .0000 1.0000

C 15 0 .2000 .4140 .0000 1.0000

Cplus 15 0 .2667 .4577 .0000 1.0000

Java 15 0 .2000 .4140 .0000 1.0000

TABLE II

Model Summary

Model R R Square

Adjusted R

Square Std. Error of the Estimate

1 .890 .792 .272 .408635

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 2, Issue 3, April-May 2014
ISSN 2091-2730

176 www.ijergs.org

TABLE III

RESULTS OF LINEAR REGRESSION MODEL
a

Variable

Unstandardized Coefficients

Standardized

Coefficients

Significance Hypothesis B Std. Error Beta

1 (Constant) -.9857 .1309 .0433

SSI * Networksize .0465 .0495 .4021 .0401 Supported

SSI * N/w centralization .1140 .5570 -.1419 .0848 Supported

SSI -.0062 .0597 -.5050 .0300

Network size -.6325 .2870 1.1874 .0920

Network centralization -.2036 .9232 -.6126 .0350

Product size -.0579 .1115 -.2294 .0631

Licence -.3221 .3766 -.3473 .0441

C -.0311 .4419 -.0268 .0947

Cplus .1046 .5625 .1000 .0861

Java -.2838 .3973 -.2453 .0515

a. Dependent Variable: codecommits

H1 says that collaboration network size and software structural interdependency mutually and positively moderate each other‘s impact

on OSS project performance. This concerns the coefficient of the interaction term of network size and software structural

interdependency. As shown in Table III this coefficient is positive and significant (β = 0.0465) in our model testing results. Hence H1

is supported.

Following Aiken and West [10], we calculated simple slopes of the effect of network size on the number of code commits per

developer per day at three values of software structural interdependency (SSI): SSI-high = 3.918, SSI-mean = 0, SSI-low = −3.918.

These three values are one standard deviation above the mean, the mean, and one standard deviation below the mean of centered SSI

values, respectively.

To gain a complete view of the mutually moderating effect of network size and SSI, we also computed the simple slopes of the effect

of SSI on the number of code commits per developer per day at one standard deviation above the mean (NS-high = 0.8992), the mean

(NS-mean = 0), and one standard deviation below the mean (NS-low = −0.8992) values of network size.

 Fig. 1. Simple Slopes of Network Size Fig.2. Simple Slopes of SSI

Fig.1 shows that network size tends to have a negative effect on project performance in terms of the number of code commits per

developer per day. However, this negative effect can be mitigated by the interaction between network size and software structural

interdependency since the negative simple slopes of network size become less steep as the structural interdependency values increase.

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 2, Issue 3, April-May 2014
ISSN 2091-2730

177 www.ijergs.org

In order to find the SSI value at which the effect of network size on project performance turns from negative to positive,we equate the

derivative of the number of code commits with respect to network size to zero(-0.6325+ 0.0465∗SSI =0). Since the result of this

equation is centered SSI value, we add the mean of SSI to this result to gain a precise view of the inflection point. The result indicates

that when there are more than 18 files per folder in a project, the effect of network size of project performance turns positive.

With respect to the effect of software structural interdependency on project performance, Fig 2 reveals that this effect is negative in

small development teams but positive in large teams. Therefore, the interaction of network size and structural interdependency plays a

key role in the relationship between project characteristics and project performance. By equating the derivative of the number of code

commits with respect to SSI to zero (−0.0062 + 0.0465∗Network-Size = 0) and adding the mean value of network size to this result,

we found that when there are more than 16 members in a project team,the effect of SSI on project performance becomes positive.

H2 proposes that collaboration network centralization and software structural interdependency mutually and positively moderate each

other‘s impact on OSS project performance. As shown in Table III, the coefficient of the interaction term of network centralization

and software structural interdependency is positive and significant (β = 0.1140). Thus, H2 is supported. Following the same simple

slope finding approach for H1, we calculated the simple slopes of the effect of network centralization (NC) on the number of code

commits per developer per day at SSI-high, SSI-mean, and SSI-low values .

 Fig. 3. Simple Slopes of Centralization. Fig. 4. Simple Slopes of SSI

Meanwhile, the simple slopes of the effect of SSI on the number of code commits per developer per day at one standard deviation

above the mean (NC-high = 0.1441), the mean (NC-mean = 0), and one standard deviation below the mean (NC-low = −0.1441)

values of network centralization are calculated.

Figs. 3 and 4 suggest that network centralization and software structural interdependency reciprocally remedy each other‘s negative

effect on project performance. Setting the derivative of the number of code commits with respect to network centralization to zero

(−0.2036 + 0.1140 ∗ SSI = 0), we found that at a moderate level of software structural interdependency (more than 6 CVS files per

folder) the effect of network centralization turns from negative to positive. The derivative analysis of the number of code commits

with respect to SSI (−0.0062 + 0.1140 ∗ Network-Centralization = 0) reveals that 0.22 degree of network centralization is the

inflection point where the effect of structural interdependency turns from negative to positive.

VI) CONCLUSION

A key motivation leading us to undertake this study is the lack of research directed at socio- technical interactions in a system

development context. To OSS practitioners, the main implication of our findings is that they can gain the best of both worlds by

adopting a hybrid software development process that incorporates strengths of both traditional software development model and recent

OSS model. Our empirical analysis demonstrates a feasible way for OSS practitioners to quantify their team structure and software

architecture in order to achieve better development performance. For example, Mozilla was redesigned toward a lower level of

structural interdependency so that a less focused team distributed across geographic and organizational boundaries could contribute to

it. Moreover, the inflection points found in our study can be used as qualitative benchmarks for OSS practitioners to evaluate the

socio-technical interactions in their projects.

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 2, Issue 3, April-May 2014
ISSN 2091-2730

178 www.ijergs.org

REFERENCES

[1] Sajad Shirali-Shahreza,Mohammad Shirali-Shahreza, ―Various Aspects of Open Source Software Development‖, 2008 IEEE

[2] C. L. Huntley, ―Organizational learning in open-source software projects: an analysis of debugging data,‖ IEEE Trans. Eng.

Manage., vol. 50, no. 4, pp. 485–493, Nov. 2003.

[3] E. Capra, C. Francalanci, and F. Merlo, ―An empirical study on the relationship among software design quality, developmen t

effort, and governance in open source projects,‖ IEEE Trans. Softw. Eng., vol. 34, no. 6, pp. 765–782, Nov./Dec. 2008.

[4]Caryn A. Conley, Lee Sproull, ―Easier Said than Done: An Empirical Investigation of Software Design and Quality in Open Source

Software Development‖, Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009

 [5]Kevin Crowston, “An exploratory study of open source software development team structure‖, ECIS 2003, Naples Italy

[6] J. R. Galbraith, ―Organization design: An information processing view.‘Interfaces, vol. 4, no. 3, pp. 28–36, 1974.

[7] K. K. Kim and N. S. Umanath, ―Structure and perceived effectiveness of software development subunits: A task contingency

analysis,‖ J. Manage.Inform. Syst., vol. 9, pp. 157–181, 1992

[8] L. C. Freeman, ―Centrality in social networks: Conceptual clarification,‖ Social Netw., 1979.

[9] M. Cataldo, J. D. Herbsleb, and K. M. Carley, ―Socio-technical congruence: A framework for assessing the impact of technical and

work dependencies on software development productivity,‖ in Proc. Second ACM-IEEE Int. Symp. Empirical Softw. Eng. Meas.,

2008, pp. 2–11.

[10] S. G.West and L. S. Aiken, Multiple Regression: Testing and Interpreting Interactions. Newbury Park, CA: Sage, 1991.

[11] G.Madey,V. Freeh, andR. Tynan, ―The open source software development phenomenon: An analysis based on social network

theory,‖ in Proc. Amer.Conf. Inform. Syst., 2002, pp. 1806–1813

[12] S. P. Borgatti,M. G. Everett, and L. C. Freeman, UCINET IV Version 1.00. Columbia, SC: Analytic Technologies, 1992

http://www.ijergs.org/

